Integration

1 Find

$$
\begin{equation*}
\int\left(x^{2}+6 \sqrt{x}-3\right) d x \tag{3}
\end{equation*}
$$

2 The curve $y=\mathrm{f}(x)$ passes through the point $(1,-2)$.
Given that

$$
\mathrm{f}^{\prime}(x)=1-\frac{6}{x^{3}},
$$

a find an expression for $\mathrm{f}(x)$.
The point A on the curve $y=\mathrm{f}(x)$ has x-coordinate 2 .
b Show that the normal to the curve $y=\mathrm{f}(x)$ at A has the equation

$$
\begin{equation*}
16 x+4 y-19=0 . \tag{5}
\end{equation*}
$$

3 The curve $y=\mathrm{f}(x)$ passes through the point (3,22).
Given that

$$
\mathrm{f}^{\prime}(x)=3 x^{2}+2 x-5
$$

a find an expression for $\mathrm{f}(x)$.
Given also that

$$
\begin{equation*}
\mathrm{g}(x)=(x+3)(x-1)^{2}, \tag{3}
\end{equation*}
$$

b show that $\mathrm{g}(x)=\mathrm{f}(x)+2$,
c sketch the curves $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ on the same set of axes.
4 Given that

$$
y=x^{2}-\frac{3}{x^{2}},
$$

find
a $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
b $\int y \mathrm{~d} x$.
5 The curve C with equation $y=\mathrm{f}(x)$ is such that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-4 x-1 .
$$

Given that the tangent to the curve at the point P with x-coordinate 2 passes through the origin, find an equation for the curve.

6 A curve with equation $y=\mathrm{f}(x)$ is such that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 \sqrt{x}-\frac{2}{\sqrt{x}}, \quad x>0 .
$$

a Find the gradient of the curve at the point where $x=2$, giving your answer in its simplest form.
Given also that the curve passes through the point $(4,7)$,
b find the y-coordinate of the point on the curve where $x=3$, giving your answer in the form $a \sqrt{3}+b$, where a and b are integers.

7 Find
a $\int(x+2)^{2} \mathrm{~d} x$,
b $\int \frac{1}{4 \sqrt{x}} \mathrm{~d} x$.
$8 \quad$ The curve C has the equation $y=\mathrm{f}(x)$ and crosses the x-axis at the point $P(-2,0)$.
Given that

$$
\mathrm{f}^{\prime}(x)=3 x^{2}-2 x-3
$$

a find an expression for $\mathrm{f}(x)$,
b show that the tangent to the curve at the point where $x=1$ has the equation

$$
\begin{equation*}
y=5-2 x \tag{3}
\end{equation*}
$$

9 Given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-\frac{3}{x^{2}}, \quad x \neq 0
$$

and that $y=0$ at $x=1$,
a find an expression for y in terms of x,
b show that for all non-zero values of x

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 y=k \tag{4}
\end{equation*}
$$

where k is a constant to be found.
10 Integrate with respect to x
a $\frac{1}{x^{3}}$,
b $\frac{(x-1)^{2}}{\sqrt{x}}$.

11 The curve $y=\mathrm{f}(x)$ passes through the point (2, -5).
Given that

$$
\mathrm{f}^{\prime}(x)=4 x^{3}-8 x
$$

a find an expression for $\mathrm{f}(x)$,
b find the coordinates of the points where the curve crosses the x-axis.
12 The curve C with equation $y=\mathrm{f}(x)$ is such that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=k-x^{-\frac{1}{2}}, \quad x>0
$$

where k is a constant.
Given that C passes through the points $(1,-2)$ and $(4,5)$,
a find the value of k,
b show that the normal to C at the point $(1,-2)$ has the equation

$$
\begin{equation*}
x+2 y+3=0 \tag{4}
\end{equation*}
$$

